Sodium nitroprusside promotes IRP2 degradation via an increase in intracellular iron and in the absence of S nitrosylation at C178.

نویسندگان

  • Jian Wang
  • Carine Fillebeen
  • Guohua Chen
  • Bill Andriopoulos
  • Kostas Pantopoulos
چکیده

In iron-replete cells the posttranscriptional regulator IRP2 undergoes ubiquitination and proteasomal degradation. A similar response occurs in cells exposed to sodium nitroprusside (SNP), an NO-releasing drug. It has been proposed that nitroprusside ([Fe(CN)5NO]2-) fails to donate iron into cells and that it promotes IRP2 degradation via S nitrosylation at C178. This residue is located within a stretch of 73 amino acids, earlier proposed to define an iron-dependent degradation domain. Surprisingly, we show that IRP2 bearing a C178S mutation or a Delta73 deletion is sensitive to degradation not only by ferric ammonium citrate (FAC) but also by SNP. Moreover, FAC and SNP attenuate the RNA-binding activities of IRP2 and its homologue IRP1 with similar kinetics. Actinomycin D, cycloheximide, succinylacetone, and dimethyl-oxalylglycine antagonize IRP2 degradation in response to both FAC and SNP, suggesting a common mechanistic basis. IRP2 is not only sensitive to fresh, but also to photodegraded SNP and remains unaffected by S-nitrosoglutathione (GSNO), an established nitrosation agent. Importantly, both fresh and photodegraded SNP, but not GSNO, promote a >4-fold increase in the calcein-accessible labile iron pool. Collectively, these results suggest that IRP2 degradation by SNP does not require S nitrosylation but rather represents a response to iron loading.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

S-nitrosylation of IRP2 regulates its stability via the ubiquitin-proteasome pathway.

Nitric oxide (NO) is an important signaling molecule that interacts with different targets depending on its redox state. NO can interact with thiol groups resulting in S-nitrosylation of proteins, but the functional implications of this modification are not yet fully understood. We have reported that treatment of RAW 264.7 cells with NO caused a decrease in levels of iron regulatory protein 2 (...

متن کامل

The role of endogenous heme synthesis and degradation domain cysteines in cellular iron-dependent degradation of IRP2.

Iron regulatory protein 2 (IRP2) is a mammalian cytosolic iron-sensing protein that regulates expression of iron metabolism proteins, including ferritin and transferrin receptor 1. IRP2 is ubiquitinated and degraded by the proteasome in iron-replete cells but is relatively stable in iron-depleted cells. Recent work has shown that IRP2 contains a unique 73-amino-acid domain that binds iron in vi...

متن کامل

Effect of foliar application of sodium nitroprusside on some morphophysiological characteristics of Alstroemeria aurea ‘Orange Queen’ under hydroponic conditions

In order to evaluate the foliar application of sodium nitroprusside on some morphological and biochemical properties of Alstroemeria cultivar Orange Queen, a research was conducted in a completely randomized design with 3 replications under hydroponic cultivation in the research greenhouse of Urmia University. Sodium nitroprusside was sprayed at concentrations of 0, 50, 100 and 200 μM. At the e...

متن کامل

Control of iron homeostasis by an iron-regulated ubiquitin ligase.

Eukaryotic cells require iron for survival and have developed regulatory mechanisms for maintaining appropriate intracellular iron concentrations. The degradation of iron regulatory protein 2 (IRP2) in iron-replete cells is a key event in this pathway, but the E3 ubiquitin ligase responsible for its proteolysis has remained elusive. We found that a SKP1-CUL1-FBXL5 ubiquitin ligase protein compl...

متن کامل

Iron regulates the intracellular degradation of iron regulatory protein 2 by the proteasome.

Iron regulatory proteins (IRP1 and IRP2) are RNA-binding proteins that bind to specific structures, termed iron-responsive elements (IREs), that are located in the 5'- or 3'-untranslated regions of mRNAs that encode proteins involved in iron homeostasis. IRP1 and IRP2 RNA binding activities are regulated by iron; IRP1 and IRP2 bind IREs with high affinity in iron-depleted cells and with low aff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 26 5  شماره 

صفحات  -

تاریخ انتشار 2006